A Banach-stone Theorem for Riesz Isomorphisms of Banach Lattices

نویسنده

  • JIN XI CHEN
چکیده

Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let C(X,E) denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism Φ : C(X,E) → C(Y, F ) such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y , and E is Riesz isomorphic to F . In this case, Φ can be written as a weighted composition operator: Φf(y) = Π(y)(f(φ(y))), where φ is a homeomorphism from Y onto X, and Π(y) is a Riesz isomorphism from E onto F for every y in Y . This generalizes some known results obtained recently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Question on Banach–stone Theorem

In this paper we use the standard terminology and notations of the Riesz spaces theory (see [2]). The Banach lattice of the continuous functions from a compact Hausdorff space into a Banach lattice E is denoted by C(K,E). If E = R then we write C(K) instead of C(K,E). 1 stands for the unit function in C(K). One version of the Banach–Stone theorem states that: Theorem 1. Let X and Y be compact H...

متن کامل

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

متن کامل

Banach Spaces

Paul Garrett [email protected] http://www.math.umn.edu/ g̃arrett/ [This document is http://www.math.umn.edu/ ̃garrett/m/fun/notes 2012-13/05 banach.pdf] 1. Basic definitions 2. Riesz’ Lemma 3. Counter-example: non-existence of norm-minimizing element 4. Normed spaces of continuous linear maps 5. Dual spaces of normed spaces 6. Banach-Steinhaus/uniform-boundedness theorem 7. Open mapping theore...

متن کامل

Some results about unbounded convergences in Banach lattices

Suppose E is a Banach lattice. A net  in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to  provided that the net  convergences to zero, weakly.  In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and   from ideals and sublattices. Compatible with un-convergenc, we show that ...

متن کامل

Strong convergence theorem for finite family of m-accretive operators in Banach spaces

The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008